$a{\color{blue}\in}A$ | 要素 $a$ が集合 $A$ に属す(の要素である) |
$A{\color{blue}\subseteq}B,\ B{\color{blue}\supseteq}A$ | 集合 $A$ が集合 $B$ に含まれる |
$A{\color{blue}=}B$ | $A$ と $B$ が等しい |
$A{\color{blue}\subset}B,\ B{\color{blue}\supset}A$ | $A$ が $B$ に真に含まれる(含まれていてかつ等しくない) |
$A{\color{blue}\cup}B:=\{x\;|\;x\in A\ または\ x\in B\}$ | $A$ と $B$ の和集合 |
$A{\color{blue}\cap}B:=\{x\;|\;x\in A\ かつ\ x\in B\}$ | $A$ と $B$ の積集合 |
$A{\color{blue}-}B:=\{x\;|\;x\in A\ かつ\ x\not\in B\}$ | $A$ から $B$ を引いた差集合 |
$A^{\color{blue}C}:=U-A$ | $A$ の補集合。$U$ は議論している世界の要素全体からなる全体集合 |
問.以下の問に答えよ |
![]()
|
$P$ | $Q$ | 連言 $P\wedge Q$ | 選言 $P\vee Q$ |
偽 | 偽 | 偽 | 偽 |
偽 | 真 | 偽 | 真 |
真 | 偽 | 偽 | 真 |
真 | 真 | 真 | 真 |
$P$ | 否定 $\neg P$ |
偽 | 真 |
真 | 偽 |
問.$A=\{x\;|\;\mathcal{A}(x)\},\ B=\{x\;|\;\mathcal{B}(x)\},\ C=\{x\;|\;\mathcal{C}(x)\}$ とする。以下の問に答えよ | ||||||||||||||||||||||||||||||||||||
![]()
1.左上図は、集合 $A,\ B,\ C$ のベン図である。$0$ から $7$ までの番号を付けた集合を表す集合演算式(や論理式)を表す右上の表の空欄を埋めよ。ここで、$A$ の欄には、対応する集合が $A$ に含まれない場合は $0$ を $A$ に含まれる場合は $1$ を入れ、$B$、$C$ の欄にも同様に記入せよ。 2.集合 $A,\ B,\ C$ で区分けされる集合はすべて、$0$ から $7$ までの番号づけられた集合の和集合で表されるから、$A,\ B,\ C$ から $\cap,\ \cup,\ ^C$($\mathcal{A}(x),\ \mathcal{B}(x),\ \mathcal{C}(x)$ から $\wedge,\ \vee,\ \neg$)の組み合わせで得られる集合演算式(論理式)で表される。 1)$1,\ 3,\ 5$ の和集合を表す集合演算式(および論理式)を求めよ。 2)$1,\ 3,\ 5$ の和集合を表す集合演算式(および論理式)をできるだけ簡単な形で表せ。 3. ![]() |
名称 | 命題論理 | 集合 $U$は全体集合 |
ベキ等則 | $P\wedge P=P\vee P=P$ | $A\cap A=A\cup A=A$ |
結合則 | $(P\wedge Q)\wedge R=P\wedge(Q\wedge R)$ $(P\vee Q)\vee R=P\vee(Q\vee R)$ |
$(A\cap B)\cap C=A\cap(B\cap C)$ $(A\cup B)\cup C=A\cup(B\cup C)$ |
交換則 | $P\wedge Q=Q\wedge P,\ P\vee Q=Q\vee P$ | $A\cap B=B\cap A,\ A\cup B=B\cup A$ |
吸収則 | $(P\wedge Q)\vee P=(P\vee Q)\wedge P=P$ | $(A\cap B)\cup A=(A\cup B)\cap A=A$ |
分配則 | $(P\wedge Q)\vee R=(P\vee R)\wedge(Q\vee R)$ $(P\vee Q)\wedge R=(P\wedge R)\vee(Q\wedge R)$ |
$(A\cap B)\cup C=(A\cup B)\cap(B\cup C)$ $(A\cup B)\cap C=(A\cap C)\cup(B\cap C)$ |
二重否定則 | $\neg(\neg P)=P$ | $(A^C)^C=A$ |
補元則 | $P\wedge \neg P=偽,\ P\vee \neg P=真$ | $A\cap A^C=\emptyset,\ A\cup A^C=U$ |
ゼロ元 | $P\wedge 偽=偽,\ P\vee 真=真$ | $A\cap \emptyset=\emptyset,\ A\cup U=U$ |
単位元 | $P\wedge 真=P,\ P\vee 偽=P$ | $A\cap U=A,\ A\cup \emptyset=A$ |
ド・モルガン の定理 | $\neg(P\wedge Q)=\neg P \vee \neg Q$ $\neg(P\vee Q)=\neg P \wedge \neg Q$ |
$(A\cap B)^C=A^C\cup B^C$ $(A\cup B)^C=A^C\cap B^C$ |
名称 | 命題論理 | 集合 |
$偽\leqq P\leqq 真$ | $\emptyset\subseteq A\subseteq U$ | |
$P\wedge Q \leqq P\leqq P\vee Q$ | $A\cap B\subseteq A\subseteq A\cup B$ | |
$P\leqq Q \Leftrightarrow \neg Q\leqq \neg P$ | $A\subseteq B \Leftrightarrow B^C \subseteq A^C$ | |
$P\leqq Q \Leftrightarrow P\wedge Q=P\Leftrightarrow P\vee Q=Q$ | $A\subseteq B\Leftrightarrow A\cap B=A\Leftrightarrow A\cup B=B$ | |
$P\leqq Q \Leftrightarrow \neg P\vee Q=真\Leftrightarrow P\wedge \neg Q=偽$ | $A\subseteq B\Leftrightarrow A^C\cup B=U\Leftrightarrow A\cap B^C=\emptyset$ | |
$P\leqq R,Q\leqq S\Rightarrow$ $P\wedge Q\leqq R\wedge S,P\vee Q\leqq R\vee S$ |
$A\subseteq C,B\subseteq D\Rightarrow$ $A\cap B\subseteq C\cap D,A\cup B\subseteq C\cup D$ |
|
$P\not\leqq Q\Leftrightarrow P>Q\Leftrightarrow P=真,\ Q=偽$ |
問.次の命題論理式・集合演算式の双対形を求めよ |
|
$P$ | $Q$ | $P\wedge Q$ | $\neg(P\wedge Q)$ | $\neg P$ | $\neg Q$ | $\neg P\vee \neg Q$ | |
$0$ | 偽 | 偽 | 偽 | 真 | 真 | 真 | 真 |
$1$ | 偽 | 真 | 偽 | 真 | 真 | 偽 | 真 |
$2$ | 真 | 偽 | 偽 | 真 | 偽 | 真 | 真 |
$3$ | 真 | 真 | 真 | 偽 | 偽 | 偽 | 偽 |
$P$ | $Q$ | $R$ | $P\wedge Q$ | $(P\wedge Q)\vee R$ | $P \vee R$ | $Q \vee R$ | $(P \vee R)\wedge(Q\vee R)$ | |
$0$ | 偽 | 偽 | 偽 | 偽 | 偽 | 偽 | 偽 | 偽 |
$1$ | 偽 | 偽 | 真 | 偽 | 真 | 真 | 真 | 真 |
$2$ | 偽 | 真 | 偽 | 偽 | 偽 | 偽 | 真 | 偽 |
$3$ | 偽 | 真 | 真 | 偽 | 真 | 真 | 真 | 真 |
$4$ | 真 | 偽 | 偽 | 偽 | 偽 | 真 | 偽 | 偽 |
$5$ | 真 | 偽 | 真 | 偽 | 真 | 真 | 真 | 真 |
$6$ | 真 | 真 | 偽 | 真 | 真 | 真 | 真 | 真 |
$7$ | 真 | 真 | 真 | 真 | 真 | 真 | 真 | 真 |
$P$ | $Q$ | $P\wedge Q$ | $P\wedge Q\leqq P$ | |
$0$ | 偽 | 偽 | 偽 | 真 |
$1$ | 偽 | 真 | 偽 | 真 |
$2$ | 真 | 偽 | 偽 | 真 |
$3$ | 真 | 真 | 真 | 真 |
$P$ | $Q$ | $P\leqq Q$ | $P\wedge Q$ | $P\wedge Q=P$ | $P\vee Q$ | $P\vee Q=Q$ | |
$0$ | 偽 | 偽 | 真 | 偽 | 真 | 偽 | 真 |
$1$ | 偽 | 真 | 真 | 偽 | 真 | 真 | 真 |
$2$ | 真 | 偽 | 偽 | 偽 | 偽 | 真 | 偽 |
$3$ | 真 | 真 | 真 | 真 | 真 | 真 | 真 |
問.以下の式を、真理値表を作成して証明せよ。 |
|
問.以下の式を、ベン図を用いて証明せよ。 |
|
問.以下の式を演繹的に証明せよ。 |
|
$x$ | $\neg x$ |
$0$ | $1$ |
$1$ | $0$ |
$x\ y$ | $x\wedge y$ | $x\vee y$ |
$0\ 0$ | $0$ | $0$ |
$0\ 1$ | $0$ | $1$ |
$1\ 0$ | $0$ | $1$ |
$1\ 1$ | $1$ | $1$ |
$x\ y$ | $F(x,y)$ | その行だけ$1$で他は$0$の 真理値を持つ論理式 |
$0\ 0$ | $0$ | $\neg x \wedge \neg y$ |
$0\ 1$ | $1$ | $\neg x \wedge y$ |
$1\ 0$ | $1$ | $x\wedge \neg y$ |
$1\ 1$ | $0$ | $x \wedge y$ |
$F(x,y)=(\neg x \wedge y)\vee(x\wedge \neg y)$ |
実習.論理式の真理値表 |
右の欄に論理式を入力して 評価 ボタンを押すと真理値表が表示される。論理記号は &(∧), |(∨), !(¬) を用い、例えば $(\neg x \wedge y)\vee(x\wedge \neg y)$ は !x&y|x&!y と表せる。 適当な論理式を入力して確かめてみよ。 |
{"width":330, "height":130, "showToolbox":false,
"toolbox":[{"type":"NOT"},{"type":"AND"},{"type":"OR"},{"type":"DC"},{"type":"LED"},{"type":"Toggle"}],
"devices":[
{"type":"DC","id":"dev0","x":16,"y":48,"label":"DC"},
{"type":"Toggle","id":"dev1","x":64,"y":16,"label":"x","state":{"on":false}},
{"type":"Toggle","id":"dev2","x":64,"y":72,"label":"y","state":{"on":false}},
{"type":"NOT","id":"dev3","x":128,"y":8,"label":"NOT"},
{"type":"AND","id":"dev4","x":184,"y":24,"label":"AND"},
{"type":"AND","id":"dev5","x":184,"y":72,"label":"AND"},
{"type":"OR","id":"dev6","x":240,"y":48,"label":"OR"},
{"type":"LED","id":"dev7","x":288,"y":48,"label":"F(x,y)"},
{"type":"NOT","id":"dev8","x":128,"y":80,"label":"NOT"}
],
"connectors":[
{"from":"dev1.in0","to":"dev0.out0"},
{"from":"dev2.in0","to":"dev0.out0"},
{"from":"dev3.in0","to":"dev1.out0"},
{"from":"dev4.in0","to":"dev3.out0"},
{"from":"dev4.in1","to":"dev2.out0"},
{"from":"dev5.in0","to":"dev1.out0"},
{"from":"dev5.in1","to":"dev8.out0"},
{"from":"dev6.in0","to":"dev4.out0"},
{"from":"dev6.in1","to":"dev5.out0"},
{"from":"dev7.in0","to":"dev6.out0"},
{"from":"dev8.in0","to":"dev2.out0"}
]
}
|
$A\ B$ | $A+B$ の 上の桁$C$ | $A+B$ の 下の桁$S$ | その行だけ1 の論理式 |
$0\ \ 0$ | $0$ | $0$ | $\neg A \wedge \neg B$ |
$0\ \ 1$ | $0$ | $1$ | $\neg A \wedge B$ |
$1\ \ 0$ | $0$ | $1$ | $A \wedge \neg B$ |
$1\ \ 1$ | $1$ | $0$ | $A \wedge B$ |
論理式 | $C=A\wedge B$ | $S=(\neg A \wedge B)\vee(A\wedge \neg B)$ |
{"width":500, "height":200, "showToolbox":true,
"toolbox":[{"type":"NOT"},{"type":"AND"},{"type":"OR"},{"type":"DC"},{"type":"LED"},{"type":"Toggle"}],
"devices":[
{"type":"OR","id":"dev0","x":264,"y":88,"label":"OR"},
{"type":"LED","id":"dev1","x":320,"y":8,"label":"C"},
{"type":"DC","id":"dev2","x":16,"y":72,"label":"DC"},
{"type":"Toggle","id":"dev3","x":80,"y":56,"label":"A","state":{"on":false}},
{"type":"AND","id":"dev4","x":144,"y":8,"label":"AND"},
{"type":"AND","id":"dev5","x":208,"y":64,"label":"AND"},
{"type":"NOT","id":"dev6","x":160,"y":56,"label":"NOT"},
{"type":"NOT","id":"dev7","x":160,"y":120,"label":"NOT"},
{"type":"AND","id":"dev8","x":208,"y":112,"label":"AND"},
{"type":"LED","id":"dev9","x":320,"y":88,"label":"S"},
{"type":"Toggle","id":"dev10","x":80,"y":120,"label":"B","state":{"on":false}}
],
"connectors":[
{"from":"dev0.in0","to":"dev5.out0"},
{"from":"dev0.in1","to":"dev8.out0"},
{"from":"dev1.in0","to":"dev4.out0"},
{"from":"dev3.in0","to":"dev2.out0"},
{"from":"dev4.in0","to":"dev3.out0"},
{"from":"dev4.in1","to":"dev10.out0"},
{"from":"dev5.in0","to":"dev6.out0"},
{"from":"dev5.in1","to":"dev10.out0"},
{"from":"dev6.in0","to":"dev3.out0"},
{"from":"dev7.in0","to":"dev10.out0"},
{"from":"dev8.in0","to":"dev3.out0"},
{"from":"dev8.in1","to":"dev7.out0"},
{"from":"dev9.in0","to":"dev0.out0"},
{"from":"dev10.in0","to":"dev2.out0"}
]
}
|
問.全加算器(桁上がり分も含めた加算回路)を実現する論理式 | ||||||||||||||||||||||||||||||||||||||||||||
|
問.加算回路の実現 |
全加算器は、問で得られた論理式からも構成できるが、$C_{in}+A+B=C_{in}+(A+B)$ なので、半加算器(HalfAdder)2個(とOR素子)を使っても構成できる。また、全加算器を(桁数)個並べれば、加算回路が実現できる。下の論理回路シミュレータで、
{"width":600, "height":500, "showToolbox":true,
"toolbox":[{"type":"HalfAdder"},{"type":"FullAdder"},{"type":"OR"},{"type":"4bitAdder"},{"type":"NOT"},{"type":"AND"},{"type":"DC"},{"type":"LED"},{"type":"Toggle"}],
"devices":[
{"type":"DC","id":"dev0","x":0,"y":64,"label":"DC"},
{"type":"Toggle","id":"dev1","x":56,"y":0,"label":"Cin","state":{"on":false}},
{"type":"Toggle","id":"dev2","x":56,"y":64,"label":"A","state":{"on":false}},
{"type":"Toggle","id":"dev3","x":56,"y":120,"label":"B","state":{"on":false}},
{"type":"LED","id":"dev4","x":384,"y":24,"label":"S"},
{"type":"LED","id":"dev5","x":384,"y":88,"label":"Cout"},
{"type":"Toggle","id":"dev6","x":56,"y":192,"label":"A0","state":{"on":false}},
{"type":"Toggle","id":"dev7","x":56,"y":248,"label":"A1","state":{"on":false}},
{"type":"Toggle","id":"dev8","x":56,"y":304,"label":"A2","state":{"on":false}},
{"type":"Toggle","id":"dev9","x":56,"y":360,"label":"A3","state":{"on":false}},
{"type":"Toggle","id":"dev10","x":104,"y":224,"label":"B0","state":{"on":false}},
{"type":"Toggle","id":"dev11","x":104,"y":272,"label":"B1","state":{"on":false}},
{"type":"Toggle","id":"dev12","x":104,"y":336,"label":"B2","state":{"on":false}},
{"type":"Toggle","id":"dev13","x":104,"y":392,"label":"B3","state":{"on":false}},
{"type":"DC","id":"dev14","x":0,"y":280,"label":"DC"},
{"type":"LED","id":"dev15","x":320,"y":192,"label":"S0"},
{"type":"LED","id":"dev16","x":320,"y":248,"label":"S1"},
{"type":"LED","id":"dev17","x":320,"y":296,"label":"S2"},
{"type":"LED","id":"dev18","x":320,"y":352,"label":"S3"},
{"type":"LED","id":"dev19","x":320,"y":408,"label":"Cout"}
],
"connectors":[
{"from":"dev1.in0","to":"dev0.out0"},
{"from":"dev2.in0","to":"dev0.out0"},
{"from":"dev3.in0","to":"dev0.out0"},
{"from":"dev6.in0","to":"dev14.out0"},
{"from":"dev7.in0","to":"dev14.out0"},
{"from":"dev8.in0","to":"dev14.out0"},
{"from":"dev9.in0","to":"dev14.out0"},
{"from":"dev10.in0","to":"dev14.out0"},
{"from":"dev11.in0","to":"dev14.out0"},
{"from":"dev12.in0","to":"dev14.out0"},
{"from":"dev13.in0","to":"dev14.out0"}
]
}
|
問7.6.AND、OR、NOT素子の設計:シミュレータを使って1~3を確かめ4に答えよ。 |
{"width":620, "height":320, "showToolbox":true,
"toolbox":[{"type":"DC"},{"type":"LED"},{"type":"Toggle"},{"type":"Switch"},{"type":"NOT"},{"type":"AND"},{"type":"OR"}],
"devices":[
{"type":"DC","id":"dev0","x":0,"y":32,"label":"DC"},
{"type":"Toggle","id":"dev1","x":48,"y":0,"label":"X","state":{"on":false}},
{"type":"Switch","id":"dev2","x":112,"y":32,"label":"Switch"},
{"type":"Toggle","id":"dev3","x":48,"y":56,"label":"Y","state":{"on":false}},
{"type":"LED","id":"dev4","x":200,"y":32,"label":"LED"},
{"type":"DC","id":"dev5","x":256,"y":32,"label":"DC"},
{"type":"Switch","id":"dev6","x":368,"y":32,"label":"Switch"},
{"type":"Toggle","id":"dev7","x":312,"y":0,"label":"X","state":{"on":false}},
{"type":"LED","id":"dev8","x":456,"y":32,"label":"¬X"},
{"type":"Toggle","id":"dev9","x":48,"y":104,"label":"X","state":{"on":false}},
{"type":"Switch","id":"dev10","x":288,"y":176,"label":"Switch"},
{"type":"LED","id":"dev11","x":368,"y":176,"label":"X∨Y"},
{"type":"Toggle","id":"dev12","x":120,"y":104,"label":"Y","state":{"on":false}},
{"type":"Switch","id":"dev13","x":112,"y":152,"label":"Switch"},
{"type":"Switch","id":"dev14","x":200,"y":152,"label":"Switch"},
{"type":"DC","id":"dev15","x":0,"y":184,"label":"DC"},
{"type":"Toggle","id":"dev16","x":56,"y":216,"label":"X","state":{"on":false}},
{"type":"DC","id":"dev17","x":0,"y":248,"label":"DC"},
{"type":"LED","id":"dev18","x":304,"y":256,"label":"X∧Y"},
{"type":"Toggle","id":"dev19","x":56,"y":272,"label":"Y","state":{"on":false}}
],
"connectors":[
{"from":"dev1.in0","to":"dev0.out0"},
{"from":"dev2.in0","to":"dev1.out0"},
{"from":"dev2.in1","to":"dev3.out0"},
{"from":"dev3.in0","to":"dev0.out0"},
{"from":"dev4.in0","to":"dev2.out0"},
{"from":"dev6.in0","to":"dev7.out0"},
{"from":"dev6.in1","to":"dev5.out0"},
{"from":"dev7.in0","to":"dev5.out0"},
{"from":"dev8.in0","to":"dev6.out0"},
{"from":"dev9.in0","to":"dev15.out0"},
{"from":"dev10.in0","to":"dev14.out0"},
{"from":"dev10.in1","to":"dev15.out0"},
{"from":"dev11.in0","to":"dev10.out0"},
{"from":"dev12.in0","to":"dev15.out0"},
{"from":"dev13.in0","to":"dev9.out0"},
{"from":"dev13.in1","to":"dev15.out0"},
{"from":"dev14.in0","to":"dev12.out0"},
{"from":"dev14.in1","to":"dev13.out0"},
{"from":"dev16.in0","to":"dev17.out0"},
{"from":"dev19.in0","to":"dev17.out0"}
]
}
|
コラム.ティンカートイ コンピュータ |
![]() |